Al – Oboudi, F., On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci., 27, 1429 – 1436, 2004.

Al- Shaqsi, K. and Darus, M., On certain subclass of analytic univalent functions with negative coefficients, Applied Math. Sci., 1(23), 1121 – 1128,2007.

Aouf, M. K. and Mostafa, A. O., Some properties of a subclass of uniformly convex functions with negative coefficients, Demon. Math., 41 ( 2), 353-370, 2008.

Aqlan, E., Jahangiri, J. M. and Kulkarni, S. R., New classes of k-uniformly convex and starlike functions, Tamkang J. Math., 35(3), 261 – 266,2004.

Deniz, E. and Orhan, H., Some properties of certain subclasses of analytic functions with negative coefficients by using generalized Ruscheweyh derivative operator, Czechoslovak Math. J., 60 (3), 699 – 713,2010.

Duren, P.L., Univalent Functions, A series of Comprehensive Studies in Mathematics, vol.259, Springer, New York,, 1983 .

El-Sshwah,R. M., Aouf, M. K. and Hassan, A. A. M. and Hassan, A. H., Subclass of multivalent beta-uniformly functions with varying arguments, J, of Math., 2013, Article ID 921543, 6 pages, 2013.

Goodman, A. W., On uniformly convex functions, Ann. Pol. Math., 56, 87-92, 1991.

Goodman, A. W., On Uniformly starlike functions, J. of Math. Anal. and Appl., 155, 364 – 370 , 1991.

Kanas, S. and Wisniowska, A., Conic regions and k-uniform convexity, Comput. Appl. Math., 105,327 -336, 1999.

Kanas, S. and Wisniowska, A., Conic domains and starlike functions, Rev. Roum. Math. Pures Appl., 45, 647-657, 2000.

Magesh, N., Certain subclasses of uniformly convex functions of order a and type fi with varying arguments, J. of the Egy. Math. Soc., 21(3), 184-189, 2013.

Murugusundarmoorthy, G. and Magesh, N., Certain subclasses of starlike functions of complex order involving generalized hypergeometric functions, Int. J. Math. Sci., 45,12 pages, 2010.

Pommerenke, C., Univalent Functions, Vandenhoeck and Ruprecht, Gottingen,, 1975.

Ronning, F., Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118, 189-196 , 1993.

Ronning, F., Integral representions of bounded starlike functions, Ann. Pol. Math., 60(3), 298-297, 1995.

Salagean, G., Subclasses of univalent functions, Lect. Notes in Math. (Springer Verlag), 1013, 362-372, 1983.

Santosh, M. P., Rajkumar, N. I., Thirupathi Reddy, P. and Venkateswarlu, B., A new subclass of analytic functions defined by linear operator, Adv. Math. Sci, Journal, 9(1), 205-217, 2020.

Schild, A., Silverman, H., Convolutions ofunivalent functions with negative coefficients, Ann. Univ. Mariae Curie-Sklodowska Sect. A., 29, 99 – 107, 1975.

Schober, G., Univalent Functions, Selected topics Lecture Notes in Math., vol. 478, Springer, New York, 1975 .

Silverman, H. , Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 , 109-116, 1975.

[22] Sobczak-Knec, M. and Zaprawa, P., Covering domains for classes of functions with real coefficients, Complex Var. Elliptic Equ., 52(6), 519-535, 2007.

Srivastava, H. M., Shanmugam, T.N., Ramachandran, C. and Sivasubramanian, S., A new subclass of k-uniformly convex functions with negative coefficients, J. Inequal. Pure Appl. Math., 8(2), 1-14, 2007.

Szynal, J., An extension of typically real functions, Ann. Univ. Mariae Curie-Sklodowska, sect. A., 48, 193-201, 1994.

Venkateswarlu, B., Thirupathi Reddy, P., Sridevi, S. and Sujatha, A certain subclass of analytic functions with negative coefficients defined by Gegenbauer polynomials, Tatra Mountains Math. Publ., (Accepted).

## Stay in touch