Volume 3 Issue 12021-03-19T08:51:04+00:00

Volume 3: Issue 1

Volume 3: Issue 1

On the Resolvent of a Non-Self-Adjoint Differential Operator in Hilbert Spaces

Author(s):  Reza Alizadeh and Ali Sameripour
DOI: 10.5281/zenodo.4595051
Keywords :  resolvent; distribution of eigenvalues; non-self-adjoint operators; elliptic operators
Cite this article:  Reza Alizadeh, & Ali Sameripour. (2021). On the Resolvent of a Non-Self-Adjoint Differential Operator in Hilbert Spaces. Online Mathematics Journal, 03(01), 1–7. DOI: 10.5281/zenodo.4595051. [BibTeX Export]

The importance of studying non-self-adjoint differential operators is becoming more and more obvious to scientists. The non-self-adjoint operators appear in many branches of science. Today, these operators have many applications in kinetic theory and quantum mechanics to linearization of equations of mathematical physics. The spectrum of these operators is unstable and their resolvent is very unpredictable. In these operators, there is no general spectral theory and this causes problems in the study of these operators. In this paper, we consider a non-self-adjoint elliptic differential operator and study its resolvent.

M.S. Agranovich, Elliptic operators on closed manifolds, Partial Differential Equations – 6, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 63, VINITI, Moscow (1990), 5-129 (In Russian).

K.Kh. Boimatov, A.G. Kostyuchenko, Distribution of eigenvalues of second-order non-selfadjoint differential operators, Vest. Mosk. Gos. Univ., Ser. I, Mat. Mekh., 45, No 3 (1990), 24-31 (In Russian).

K.Kh. Boimatov, Asymptotic behaviour of the spectra of second-order non-selfadjoint systems of differential operators, Mat. Zametki, 51, No 4 (1992), 6-16 (In Russian).

K.Kh. Boimatov, Asymptotics of the spectrum of an elliptic differential operator in the degenerate case, Dokl. Akad. Nauk SSSR, 243, No 6 (1978), 1369-1372 (In Russian).

K.Kh. Boimatov, Separability theorems, weighted spaces and their applications, Investigations in the Theory of Differentiable Functions of Many Variables and its Applications. Part 10, Collection of Articles, Trudy Mat. Inst. Steklov, 170 (1984), 37-76; Proc. Steklov Inst. Math., 170 (1987), 39-81 (In Russian).

K.Kh. Boimatov, Spectral asymptotics of pseudodifferential operators, Dokl. Akad. Nauk SSSR, 311, No 1 (1990), 14-18; Dokl. Math., 41, No 2 (1990), 196-200 (In Russian).

I.C. Gokhberg, M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, American Mathematical Society, Providence (1969).

T. Kato, Perturbation Theory for Linear Operators, Springer, New York (1966).

M.A. Naymark, Linear Differential Operators, Moscow, Nauka Publ., (1969) (In Russian).

A. Sameripour, K. Seddighi, Distribution of eigenvalues of nonself-adjoint elliptic systems degenerate on the domain boundary, Mat. Zametki, 61, No 3 (1997), 463-467; Math. Notes, 61, No 3 (1997), 379-384; doi: https://doi.org/10.4213/mzm1524 (In Russian).

A. Sameripour, K. Seddighi, On the spectral properties of generalized non-selfadjoint elliptic systems of differential operators degenerated on the boundary of domain, Bull. Iranian Math. Soc., 24, No 1 (1998), 15-32.

A.A. Shkalikov, Theorems of Tauberian type on the distribution of zeros of holomorphic functions, Mat. Sb. (N.S.), 123 (165), No 3 (1984), 317-347; Math. USSR-Sb., 51, No 2 (1985) 315-344 (In Russian).

K. Schmudgen, Unbounded Self-adjoint Operators on Hilbert Spaces, Springer, 2012.

R. Alizadeh, A. Sameripour, On The Spectral Properties of Non- Self-Adjoint Elliptic Differential Operators in Hilbert space, Advances in the Theory of Nonlinear Analysis and its Applications 4 (2020) No. 4, 316–320. https://doi.org/10.31197/atnaa.650378

G. Leoni, A first course in Sobolev spaces, American Mathematical Society, 2009.

A.Sameripour, Y.Yadollahi, Topics on the spectral properties of degenerate nonself-adjoint differential operators, Journal of Inequality and applications (2016) 2016:207, DOI 10.1186/s13660-016-1138-5

D. Haroske, H. Triebel, Distributions, Sobolev Spaces, Elliptic Equations, European Mathematical Society, 2008.

Download Full Text

A Certain Subclass of Uniformly Convex Functions with Negative Coefficients Defined by Gegenbauer Polynomials

Author(s):  B. Venkateswarlu, P. Thirupathi Reddy, S. Sridevi, and Sujatha Tha
DOI: 10.5281/zenodo.4595454
Keywords :  analytic, coefficient bounds, extreme points, convolution, polynomials
Cite this article:  B. Venkateswarlu, P. Thirupathi Reddy, S. Sridevi, & Sujatha Tha. (2021). A Certain Subclass of Uniformly Convex Functions with Negative Coefficients Defined by Gegenbauer Polynomials. Online Mathematics Journal, 03(01), 8–18. DOI: 10.5281/zenodo.4595454. [BibTeX Export]

In this paper, we introduce a new subclass of uniformly convex functions defined by Gegenbauer polynomials with negative coefficients. For functions in the class TS, we attain coefficient bounds, growth distortion properties, extreme points and radii of close-to-convexity, starlikeness and convexity. For this class, we also produced modified Hadamard product, convolution, and integral operators.

Al – Oboudi, F., On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci., 27, 1429 – 1436, 2004.

Al- Shaqsi, K. and Darus, M., On certain subclass of analytic univalent functions with negative coefficients, Applied Math. Sci., 1(23), 1121 – 1128,2007.

Aouf, M. K. and Mostafa, A. O., Some properties of a subclass of uniformly convex functions with negative coefficients, Demon. Math., 41 ( 2), 353-370, 2008.

Aqlan, E., Jahangiri, J. M. and Kulkarni, S. R., New classes of k-uniformly convex and starlike functions, Tamkang J. Math., 35(3), 261 – 266,2004.

Deniz, E. and Orhan, H., Some properties of certain subclasses of analytic functions with negative coefficients by using generalized Ruscheweyh derivative operator, Czechoslovak Math. J., 60 (3), 699 – 713,2010.

Duren, P.L., Univalent Functions, A series of Comprehensive Studies in Mathematics, vol.259, Springer, New York,, 1983 .

El-Sshwah,R. M., Aouf, M. K. and Hassan, A. A. M. and Hassan, A. H., Subclass of multivalent beta-uniformly functions with varying arguments, J, of Math., 2013, Article ID 921543, 6 pages, 2013.

Goodman, A. W., On uniformly convex functions, Ann. Pol. Math., 56, 87-92, 1991.

Goodman, A. W., On Uniformly starlike functions, J. of Math. Anal. and Appl., 155, 364 – 370 , 1991.

Kanas, S. and Wisniowska, A., Conic regions and k-uniform convexity, Comput. Appl. Math., 105,327 -336, 1999.

Kanas, S. and Wisniowska, A., Conic domains and starlike functions, Rev. Roum. Math. Pures Appl., 45, 647-657, 2000.

Magesh, N., Certain subclasses of uniformly convex functions of order a and type fi with varying arguments, J. of the Egy. Math. Soc., 21(3), 184-189, 2013.

Murugusundarmoorthy, G. and Magesh, N., Certain subclasses of starlike functions of complex order involving generalized hypergeometric functions, Int. J. Math. Sci., 45,12 pages, 2010.

Pommerenke, C., Univalent Functions, Vandenhoeck and Ruprecht, Gottingen,, 1975.

Ronning, F., Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118, 189-196 , 1993.

Ronning, F., Integral representions of bounded starlike functions, Ann. Pol. Math., 60(3), 298-297, 1995.

Salagean, G., Subclasses of univalent functions, Lect. Notes in Math. (Springer Verlag), 1013, 362-372, 1983.

Santosh, M. P., Rajkumar, N. I., Thirupathi Reddy, P. and Venkateswarlu, B., A new subclass of analytic functions defined by linear operator, Adv. Math. Sci, Journal, 9(1), 205-217, 2020.

Schild, A., Silverman, H., Convolutions ofunivalent functions with negative coefficients, Ann. Univ. Mariae Curie-Sklodowska Sect. A., 29, 99 – 107, 1975.

Schober, G., Univalent Functions, Selected topics Lecture Notes in Math., vol. 478, Springer, New York, 1975 .

Silverman, H. , Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 , 109-116, 1975.

[22] Sobczak-Knec, M. and Zaprawa, P., Covering domains for classes of functions with real coefficients, Complex Var. Elliptic Equ., 52(6), 519-535, 2007.

Srivastava, H. M., Shanmugam, T.N., Ramachandran, C. and Sivasubramanian, S., A new subclass of k-uniformly convex functions with negative coefficients, J. Inequal. Pure Appl. Math., 8(2), 1-14, 2007.

Szynal, J., An extension of typically real functions, Ann. Univ. Mariae Curie-Sklodowska, sect. A., 48, 193-201, 1994.

Venkateswarlu, B., Thirupathi Reddy, P., Sridevi, S. and Sujatha, A certain subclass of analytic functions with negative coefficients defined by Gegenbauer polynomials, Tatra Mountains Math. Publ., (Accepted).

Download Full Text

Two-Parameter Generalization of the Collatz Function: Characterization of Terminal Cycles and Empirical Results

Author(s):  Boris B. Stefanov
DOI: 10.5281/zenodo.4609709
Keywords :  analytic, coefficient bounds, extreme points, convolution, polynomials
Cite this article:  Boris B. Stefanov. (2021). Two-Parameter Generalization of the Collatz Function: Characterization of Terminal Cycles and Empirical Results. Online Mathematics Journal, 03(01), 19–25. DOI: 10.5281/zenodo.4609709. [BibTeX Export]

This paper proposes a new two-parameter generalization T_{b,s}(x) of the Z -> Z Collatz function T(x) and restates the eponymous conjecture in terms of the proposed function. The generalization obviates some of the conditions for emergence of terminal cycles for the Collatz T(x) function over the integers. The stopping behavior of the T_{b,s}(x) is qualitatively similar to that of the T(x). The paper presents theoretical discussion of the generalization and computational results on the terminal cycles and stopping times of T_{b,s}(x). The {1,2} cycle of T(x) is shown to be a case of coincidence of three independent cycle categories of T_{b,s}(x).

Allouche, J.-P. (1978-1979), Sur la conjecture de “Syracuse-Kakutani-Collatz”, Seminaire de Theorie des Nombres 9, 15pp.

Chamberland, M. (2010), A 3x+1 survey: number theory and dynamical systems, in Jeffey C. Lagarias, ed., ‘The ultimate challenge: the 3x+1 problem’, Am. Math. Soc., Providence, RI, pp. 57-78.

Collatz, L. (1986), ‘On the motivation and origin of the (3n+1)-problem’, J. of Qufu Normal University, Natural Science Editio 12, 9–11.

Gutierrez, A. (2020), ‘Collatz conjecture revisited:an elementary generalization’, Acta Univ. Sapientiae, Mathematica 12(1), 112–127.

Korec, I. (1994), ‘A density estimate for the 3x+1 problem’, Math. Slovaca 44(1), 85-89.

Lagarias, J. (1985), ‘The 3x + 1 problem and its generalizations’, American Mathematical Monthly 92(1), 3-23.

Lagarias, J. C. (2010), A 3x+1 survey: An Overview, in Jeffey C. Lagarias, ed., ‘The ultimate challenge: the 3x+1 problem’, Am. Math. Soc., Providence, RI, pp. 3-29.

Lagarias, J. C. (2010), A 3x+1 problem and its generalizations, in Jeffey C. Lagarias, ed., ‘The ultimate challenge: the 3x+1 problem’, Am. Math. Soc., Providence, RI, pp. 31-54.

Lagarias, J. C. (2012), ‘The 3x + 1 Problem: An Annotated Bibliography, II (2000-2009)’, arXiv:math/0608208v6.

Lagarias, J. C. (2011), ‘The 3x + 1 Problem: An Annotated Bibliography (1963-1999)’, arXiv:math/0309224v13.

e Silva, T. O. (2010), Empirical verification of the 3x+1 and related conjecture, in Jeffey C. Lagarias, ed., ‘The ultimate challenge: the 3x+1 problem’, Am. Math. Soc., Providence, RI, pp. 189-207.

Tao, T. C. (2020), ‘Almost all orbits of the Collatz map attain almost bounded values’, arXiv: 1909.03562.

Terras, R. (1976), ‘A stopping time problem on the positive integers’, Acta Arith. 30, 241-252.

Download Full Text