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Abstract

Interval arithmetic has been proved to be very subtle, reliable, and most fundamental in addressing uncertainty and imprecision.
However, the theory of classical interval arithmetic and all its alternates suffer from algebraic anomalies, and all have difficulties
with interval dependency. A theory of interval arithmetic that seems promising is the theory of parametric intervals. The theory
of parametric intervals is presented in the literature with the zealous claim that it provides a radical solution to the long-standing
dependency problem in the classical interval theory, along with the claim that parametric interval arithmetic, unlike Moore’s
classical interval arithmetic, has additive and multiplicative inverse elements, and satisfies the distributive law. So, does the
theory of parametric intervals accomplish these very desirable objectives? Here it is argued that it does not.
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If you have to prove a theorem, do not rush. First of all, understand fully what the theorem
says, try to see clearly what it means. Then check the theorem; it could be false. Examine the
consequences, verify as many particular instances as are needed to convince yourself of the
truth. When you have satisfied yourself that the theorem is true, you can start proving it.

– George Polya (1887–1985)

1 Introduction

Does the way, in which we learn about the physical world, meet our persistent seeking for deterministic scientific
knowledge? Our knowledge of real-world systems is acquired through observing, experimenting, measuring identifiable
features, and formulating hypotheses with the aid of formal reasoning ([12] and [21]). Through our encounters with
the physical world, it reveals itself to us as systems of uncertain quantifiable properties. Knowledge, then, is not
absolute certainty. Knowledge, per contra, is the theoretical and practical tools we develop to purposely get better and
better outcomes through our learning about the world [12]. In the effort to deal with quantifiable uncertainties, various
theoretical approaches have been developed. One approach that proved to be subtle, reliable, and most fundamental in
all of mathematics of uncertainty is interval mathematics. The field of interval mathematics has its roots from the Greek
mathematician Archimedes of Syracuse (287–212 BC), who used guaranteed lower and upper bounds to compute his
constant π [32], to the American mathematician Ramon Edgar Moore (1929–2015), who was the first to define interval
analysis in its modern sense and recognize its power as a viable computational tool for intervalizing uncertainty [45].
In between, historically speaking, several distinguished constructions of interval arithmetic by John Charles Burkill,
Rosalind Cecily Young, Paul S. Dwyer, Teruo Sunaga, and others (see, e.g., [4], [61], [24], and [56]) have emphasized
the very idea of reasoning about uncertain values through calculating with intervals. In the fifties and sixties of the
twentieth century, research in interval mathematics and its applications has started to blossom with the works of Paul S.
Dwyer, Ramon Edgar Moore, Raymond E. Boche, Sidney Shayer, and others who made the term “interval arithmetic”
popular (see, [24], [45], [3], and [54]). By integrating the complementary powers of rigorous mathematics and scientific
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computing, interval arithmetic is able to offer highly reliable accounts of uncertainty. It should therefore come as no
surprise that the interval theory has been profitably applied in many areas that deal intensely with uncertain quantitative
data (see, e.g., [12], [14], [23], [22], [27], [29], [38], [39], and [46]).

As a result of the computational power against error provided by the interval methods, machine realizations of
interval arithmetic are of utmost importance. As a matter of course, there are various software implementations of
interval arithmetic. As instances, one may mention INTLAB, Sollya, InCLosure and others (see, e.g., [53], [5], [13], and
[44]). Fortunately, with the tremendous computing power of parallel and distributed processing, computers are getting
faster and faster. That being so, it is very possible to make interval computations as fast as floating point computations
(For further reading about machine arithmetizations and hardware circuitries for interval arithmetic, see, e.g., [10], [14],
[37], [36], [41], [48], [34], and [35]).

Nevertheless, despite all these advantages of interval mathematics, it has its pitfalls as well. The algebraic system
of classical interval arithmetic is a commutative S-semiring [22], which is a primitive algebraic structure, if compared
to the totally ordered field of real numbers. Two useful properties of ordinary real arithmetic fail to hold in classical
interval arithmetic: additive and multiplicative inverses do not always exist for interval numbers, and there is no
distributivity between addition and multiplication except for certain special cases. Another main drawback of the
classical interval theory emerges from a peculiarity of interval arithmetic: interval arithmetic considers all instances of
variables as independent. Accordingly, when computing interval enclosure of real functions some of whose variables
are functionally dependent, we usually get overestimations, and in many situations, the interval enclosure might be too
wide to be useful. This phenomenon is known as the interval dependency problem [21].

A considerable scientific effort is put into developing special methods and algorithms that try to overcome the
difficulties imposed by the algebraic system of classical intervals. Also, various proposals for possible alternate
theories of interval arithmetic were introduced to reduce the dependency effect or to enrich the algebraic structure
of interval numbers (For further details, the reader may consult, e.g., [11], [28], [30], [31], [40], [42], and [43]). One
theory of interval arithmetic that seems promising is the theory of parametric intervals. The term “parametric interval
arithmetic” is reasonably recent, but the idea perhaps has an earlier root in Cleary’s “logical arithmetic” which is a
logical technique, for real arithmetic in Prolog, that uses constraints over real intervals (see [7] and [8]). In the course of
history, parametric interval arithmetic has been invented and re-invented several times, under different names: “logical
intervals”, “constrained intervals”, “instantiation intervals”, “RDM intervals”, and “Overestimation-free intervals” (see,
e.g., [7], [10], [11], [22], [25], [42], and [49]).

But, what exactly is the algebraic structure of parametric interval arithmetic? The interval literature does not
provide an answer for this question which looks simple and answerable, but when subject to formal investigation,
develops into a problematic situation. What is noteworthy here also is that the parametric approach to interval analysis
is usually introduced in the interval literature with the very zealous claims that parametric interval arithmetic, unlike
classical interval arithmetic, has additive and multiplicative inverse elements, satisfies the distributive law, and explicitly
provides a solution to the long-standing dependency problem. So, does the theory of parametric intervals accomplish
these very desirable objectives? In this article, it is argued that it does not.

The underlying idea of parametric interval arithmetic seems elegant and simple, but it is too simple to fully account
for the notion of interval dependency or to achieve a richer algebraic structure for interval arithmetic. It is therefore
imperative both to supply the defect in the parametric approach and to present an alternative theory with a mathematical
construction that avoids the defect. The former is attempted in this article, and the latter is attempted in [22].

Our main purpose in this article is then to introduce the theory of parametric intervals and to mathematically
examine to what extent it can accomplish these very desirable algebraic properties. For this goal to be met, we have to
set the stage by formalizing a number of purely logical and algebraic notions of particular importance for our purpose.
This formalization is mainly done in section 2. Section 3 is devoted to recasting “classical interval arithmetic” in a
formalized theory ThI of interval algebra over the real field, along with providing a logical systematization of interval
dependency as presented in [21]. With the aid of this systematization, we provide, in sections 4 and 5, an in-depth
investigation of the theory ThP of parametric intervals and examine to what extent its claims are accomplishable. The
investigation of parametric intervals conducted in this article is metatheoretical in nature and based indispensably on
the systematization of interval dependency presented in [21] and the metamathematical apparatus fixed in section 2.
That is, most of the results deduced in this article are metatheorems about the theory ThP of parametric intervals.

2 On Some Fundamental Notions of Logic and Algebra

The adaptation of a particular formal approach, other than that of natural language, is of the utmost importance and
has been forced on us by the pursuit of a strictly accurate formulation of the mathematical concepts. Therefore, we
commence the work by specifying some notational conventions and formalizing some purely logical and algebraic
ingredients we shall need throughout this text (For further details about the notions prescribed here, the reader may
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consult, e.g., [2], [16], [17], [20], [14], [21], [22], and [57]).
A set-theoretical relation is a particular type of sets. Let S2 be the binary Cartesian power of a set S. A binary

relation on S is a subset of S2. That is, a set ℜ is a binary relation on a set S iff (∀r ∈ℜ)((∃x,y ∈ S)(r = (x,y)). We
will follow Suppes [57] and Tarski [58] in defining, within a set-theoretical framework, the notion of a finitary relation
and some related concepts. Let Un be the n-th Cartesian power of a set U . A set ℜ⊆ Un is an n-ary relation on U iff ℜ

is a binary relation from Un−1 to U . That is, for v = (x1, ...,xn−1) ∈ Un−1 and y ∈ U , an n-ary relation ℜ is defined
to be ℜ⊆ Un = {(v,y) |v ∈ Un−1∧ y ∈ U}. In this sense, an n-ary relation is a binary relation (or simply a relation);
then its domain, range, field, and converse are defined to be, respectively dom(ℜ) = {v ∈ Un−1|(∃y ∈ U)(vℜy)},
ran(ℜ) = {y ∈ U|

(
∃v ∈ Un−1

)
(vℜy)}, fld(ℜ) = dom(ℜ)∪ ran(ℜ), and ℜ̂ = {(y,v) ∈ Un|vℜy}. It is thus obvious

that yℜ̂v⇔ vℜy and
̂̂
ℜ = ℜ.

The notions of the image and preimage of a set, with respect to an n-ary relation, are characterized as follows ([21]
and [22]).

Definition 2.1 (Image and Preimage of a Relation). Let ℜ be an n-ary relation on a set U , and for (v,y) ∈ ℜ, let
v = (x1, ...,xn−1), with each xk is restricted to vary on a set Xk ⊂ U , that is, v is restricted to vary on a set V⊂ Un−1.
Then, the image of V (or the image of the sets Xk) with respect to ℜ, denoted Iℜ, is defined to be

Y = Iℜ (V) = Iℜ (X1, ...,Xn−1)

= {y ∈ U|(∃v ∈ V)(vℜy)}
= {y ∈ U|

(
∃n−1

k=1xk ∈ Xk
)
((x1, ...,xn−1)ℜy)},

where the set V, called the preimage of Y , is defined to be the image of Y with respect to the converse relation ℜ̂, that is

V = I
ℜ̂
(Y ) = {v ∈ Un−1|(∃y ∈ Y )

(
yℜ̂v

)
}.

In accordance with this definition and the fact that yℜ̂v⇔ vℜy, we obviously have Y = Iℜ (V)⇔ V = I
ℜ̂
(Y ).

Now for a mathematically satisfactory characterization of a finitary function. Within this set-theoretical framework,
a completely general definition of the notion of an n-ary function can be formulated. A set f is an n-ary function on a
set U iff f is an (n+1)-ary relation on U , and (∀v ∈ Un)(∀y,z ∈ U)(v f y∧v f z⇒ y = z). Thus, an n-ary function is a
many-one (n+1)-ary relation; that is, a relation, with respect to which, any element in its domain is related exactly to
one element in its range. Getting down from relations to the particular case of functions, we have at hand the standard
notation: y = f (v) in place of v f y. From the fact that an n-ary function is a special kind of relation, then all the
preceding definitions and results, concerning the domain, range, field, and converse of a relation, apply to functions as
well.

With some criteria satisfied, a function is called invertible. A function f has an inverse, denoted f−1, iff its converse
relation f̂ is a function, in which case f−1 = f̂ . In other words, f is invertible if, and only if, it is an injection from
its domain to its range, and obviously the inverse f−1 is unique, from the fact that the converse relation is always
definable and unique.

With the aid of the above concepts, we next define the notions of partial and total operations.

Definition 2.2 (Partial and Total Operations). Let Sn be the n-th Cartesian power of a set S . An n-ary (total) operation
on S is a total function tn : Sn 7−→ S . An n-ary partial operation in S is a partial function pn : U 7−→S , where U ⊂ Sn.
The ordinal n is called the arity of tn or pn.

A binary operation is an n-ary operation for n = 2. Addition and multiplication on the set R of real numbers are
best-known examples of binary total operations, while division is a partial operation in R.

A formalized theory is characterized by two things; an object language in which the theory is formalized (the
symbolism of the theory), and a set of axioms. Let L be an object formal language. A formalized theory in L (or an
L-theory) is a set of L-sentences which is closed under its associated deductive apparatus. Let ΛT denote a finite set of
L-sentences, and let ϕ denote an L-sentence. The formalized L-theory T of the set ΛT is the deductive closure of ΛT

under logical consequence, that is

T= {ϕ ∈ L|ϕ is a consequence of ΛT}.

The set ΛT is called the set of axioms (or postulates) of T.
A model (or an interpretation) of a theory T is some particular (algebraic or relational) structure that satisfies every

formula of T. The notion of a structure of a formalized language L (or an L-structure) is characterized in the following
definition (see [21] and [22]).
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Definition 2.3 (Structures). Let L be a formalized language (possibly with no individual constants). By an L-structure
we understand a system M=

〈
A;FM;RM

〉
, where

• A is a (possibly empty) set called the individuals universe of M. The elements of A are called the individual
elements of M;

• FM is a (possibly empty) set of finitary total operations onA. The elements of FM are called the M-operations;

• RM is a (possibly empty) set of finitary relations on A. The elements of RM are called the M-relations.

An L-structure with an empty individuals universe is called an empty L-structure 1. By a many-sorted L-structure
we understand an L-structure with more than one universe set. By a relational L-structure we understand an L-structure
with a non-empty set of relations and an empty set of functions. By an algebraic L-structure (or an L-algebra) we
understand an L-structure with a non-empty set of functions. An L-algebra endowed with a compatible ordering
relation ℜ is called an ℜ-ordered L-algebra.

The notion of inverse elements can be precisely formulated in the following definition ([22]).

Definition 2.4 (Inverse Elements). Let 〈A;•;e•〉 be an algebra with • is a binary operation on A and e• is the identity
element for •. We say that every element of A has an inverse element with respect to the operation • iff

(∀x ∈ A)(∃y ∈ A)(x• y = e•) .

Next, we characterize some algebraic structures of particular importance to our purpose (see [21] and [22]).

Definition 2.5 (Ringoid). A ringoid (or a ring-like structure) is a structure R = 〈R;+R,×R〉 with +R and ×R are
total binary operations on the universe setR. The operations +R and ×R are called respectively the addition and
multiplication operations of the ringoid R.

Definition 2.6 (S-Ringoid). An S-ringoid (or a subdistributive ringoid) is a ringoid that satisfies at least one of the
following subdistributive criteria.

(i) (∀x,y,z ∈R)(x×R (y+R z)⊆ x×R y+R x×R z),

(ii) (∀x,y,z ∈R)((y+R z)×R x⊆ y×R x+R z×R x).

Criteria (i) and (ii) in the preceding definition are called respectively left and right subdistributivity (or S-
distributivity).

Definition 2.7 (Semiring). Let R= 〈R;+R,×R〉 be a ringoid. R is said to be a semiring iff

(i) 〈R;+R〉 is a commutative monoid with identity element 0R,

(ii) 〈R;×R〉 is a monoid with identity element 1R,

(iii) Multiplication, ×R, left and right distributes over addition, +R,

(iv) 0R is an absorbing element for ×R.

A commutative semiring is one whose multiplication is commutative.

Definition 2.8 (S-Semiring). An S-semiring (or a subdistributive semiring) is an S-ringoid that satisfies criteria (i), (ii),
and (iv) in definition 2.7. A commutative S-semiring is one whose multiplication is commutative.

Here, let us make a note: the notion of S-semiring is a generalization of the notion of a near-semiring; a near-
semiring is a ringoid that satisfies the criteria of a semiring except that it is either left or right distributive (For detailed
discussions of near-semirings and related concepts, the interested reader may consult, e.g., [60], [50], and [6]).

Two further definitions we shall need are those of a number system and an S-number system ([22]).

Definition 2.9 (Number System). A number system is a ringoid N= 〈N ;+N ,×N 〉 with +N and ×N are each both
commutative and associative, and ×N distributes over +N .

Definition 2.10 (S-Number System). An S-number system (or a subdistributive number system) is an S-ringoid N=
〈N ;+N ,×N 〉 with +N and ×N are each both commutative and associative.

1First-order logics with empty structures were first considered by Mostowski in [47], and then studied by many logicians (see, e.g., [51], [33], and
[1]). Such logics are now referred to as free logics.
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The notion of dependency is one of the most fundamental ingredients that underlie mathematical reasoning and
scientific reasoning in general. The notion of dependency comes from the notion of a function. Not surprisingly,
therefore, there is scarcely a mathematical theory which does not involve the notion of a function (See, e.g., [11],
[21], and [22]). We close this section by fixing a symbolic apparatus suitable and adequate for reducing the notion of
functional dependence to the pure logical concepts of Skolemization and quantification dependence.

Two pure logical notions we shall need are those of a quantification matrix and a prenex sentence. A quantification
matrixQ is a sequence (Q1x1) ...(Qnxn), where x1, ...,xn are variable symbols and each Qi is ∀ or ∃. A prenex sentence
is a sentence of the form Qϕ , where Q is a quantification matrix and ϕ is a quantifier-free formula.

The most fundamental part of all mathematics is formal logic. So, getting down to the most elementary fundamen-
tals, it can be shown that in all mathematical theories, any type of dependence can be reduced to the following simple
logical definition (see, e.g., [21] and [22]).

Definition 2.11 (Quantification Dependence). Let Q be a quantification matrix and let ϕ (x1, ...,xm;y1, ...,yn) be a
quantifier-free formula. For any universal quantification (∀xi) and any existential quantification (∃y j) in Q, the
variable y j is dependent on the variable xi in the prenex sentence Qϕ iff (∃y j) is in the scope of (∀xi) in Q. Otherwise
xi and y j are independent.

That is, the order of quantifiers in a quantification matrix determines the mutual dependence between the variables
in a sentence. For example, consider the prenex sentence

(∃x)(∀y)(∃z)(y = x◦ y∧ x = z◦ y) ,

which asserts that there exists an identity element x, for the operation ◦, with respect to which every element possesses
an inverse z. According to the order in which quantifiers are written, the variable z depends only on y, while there is no
dependency between x and y or between x and z. Also, in the prenex sentence

(∀x)(∃y)(∀z)(∃u)ϕ (x,y,z,u) ,

the variable y depends on x, and the variable u depends on both x and z.
By means of a Skolem equivalent form or a Skolemization 2, a quantification dependence is translated into a

functional dependence. The notion of a Skolem equivalent form is characterized in the following definition (see, e.g.,
[21], [22], [26], and [59]).

Definition 2.12 (Skolem Equivalent Form). Let σ be a sentence that takes the prenex form

(∀m
i=1xi)

(
∃n

j=1y j
)

ϕ (x1, ...,xm;y1, ...,yn) .

where ϕ is a quantifier-free formula.
The Skolem equivalent form of σ is defined to be(

∃n
j=1 f j

)
(∀m

i=1xi)ϕ (x1, ...,xm; f1, ..., fn) ,

where f j (x1, ...,xm) = y j are the dependency functions of y j upon x1, ...,xm, for i ∈ {1, ...,m} and j ∈ {1, ...,n}.

Not surprisingly, therefore, that in all mathematics, any instance of a dependence is, in fact, a functional dependence.
To further illustrate, it is sufficient to give an example. Let a sentence σ take the prenex form

(∀x)(∃y)(∀z)(∃u)ϕ (x,y,z,u) .

The Skolem equivalent form of σ is

(∃ f )(∃g)(∀x)(∀z)ϕ (x, f (x) ,z,g(x,z)) .

3 Classical Interval Algebra and Interval Dependence: A Formalized Treatment

There are many theories of interval arithmetic (see, e.g., [30], [41], [28], [43], [42], [34], [35], [10], [19], [15], and [22]).
We are here interested in classical interval arithmetic as introduced in, e.g., [45], [54], [46], [12], [14], and [21]. The
present section therefore is devoted to recasting “classical interval arithmetic” in a formalized theory ThI of interval
algebra over the real field. We shall do such a recasting by putting on a systematic basis the fundamental notions of

2Skolemization is named after the Norwegian logician Thoralf Skolem (1887–1963), who first presented the notion in [55].
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the classical interval theory, with the requisite formalized apparatus of section 2. After characterizing the theory ThI ,
we close this section by providing a logical systematization of interval dependency as presented in [21]. With the aid
of this systematization, we provide, in section 5, an in-depth investigation of the theory of parametric intervals and
examine to what extent its claims are accomplishable.

Hereafter and throughout this work, the machinery used, and assumed priori, is the standard (classical) predicate
calculus and axiomatic set theory. Moreover, in all the proofs, elementary facts about operations and relations on the
real numbers are usually used without explicit reference.

A theory ThI of a real interval algebra (a classical interval algebra or an interval algebra over the real field) can
be characterized in the following definition (see [21] and [22]).

Definition 3.1 (Theory of Real Interval Algebra). Take σ = {+,×;−,−1 ;0,1} as a set of non-logical constants and let
R=

〈
R;σR

〉
be the totally ≤-ordered field of real numbers. The theory ThI of an interval algebra over the field R is

the theory of a two-sorted structure IR =
〈
IR;R;σIR

〉
prescribed by the following set of axioms.

(I1) (∀X ∈ IR)(X = {x ∈ R|(∃x ∈ R)(∃x ∈ R)(x≤R x≤R x)}),

(I2) (∀X ,Y ∈ IR)
(
◦ ∈ {+,×}⇒ X ◦IR Y = {z ∈ R|(∃x ∈ X)(∃y ∈ Y )(z = x◦R y)}

)
,

(I3) (∀X ∈ IR)
(
� ∈ {−}∨

(
� ∈ {−1}∧0IR 6⊆ X

)
⇒�IRX = {z ∈ R|(∃x ∈ X)(z = �Rx)}

)
.

The sentence (I1) of definition 3.1 characterizes what an interval number (or a closed R-interval) is. The sentences
(I2) and (I3) prescribe, respectively, the binary and unary operations for R-intervals. Hereafter, the upper-case Roman
letters X , Y , and Z (with or without subscripts), or equivalently [x,x],

[
y,y
]
, and [z,z], shall be employed as variable

symbols to denote real interval numbers. A point (singleton) interval number {x} shall be denoted by [x]. The letters A,
B, and C, or equivalently [a,a],

[
b,b
]
, and [c,c], shall be used to denote constants of IR. Also, we shall single out the

symbols 1I and 0I to denote, respectively, the singleton R-intervals {1R} and {0R}. For the purpose at hand, it is
convenient to define two proper subsets of IR: the sets of symmetric interval numbers and point interval numbers.
Respectively, these are defined and denoted by

IS = {X ∈ IR|(∃x ∈ R)(0≤ x∧X = [−x,x])},
I[x] = {X ∈ IR|(∃x ∈ R)(X = [x,x])}.

From the fact that real intervals are totally ≤R-ordered subsets of R, equality of R-intervals follows immediately
from the axiom of extensionality 3 of set theory. That is,

[x,x] =I
[
y,y
]
⇔ x =R y∧ x =R y.

Since R-intervals are ordered sets of real numbers, it follows that the next theorem is derivable from definition 3.1
(see [21] and [22]).

Theorem 3.1 (Interval Operations). For any two interval numbers [x,x] and
[
y,y
]
, the binary and unary interval

operations are formulated in terms of the intervals’ endpoints as follows.

(i) [x,x]+I
[
y,y
]
=
[
x+R y,x+R y

]
,

(ii) [x,x]×I
[
y,y
]
=
[
min{x×R y,x×R y,x×R y,x×R y},max{x×R y,x×R y,x×R y,x×R y}

]
,

(iii) −I [x,x] = [−Rx,−Rx],

(iv) 0I 6⊆ [x,x]⇒ [x,x]
−1I

=
[
x
−1R ,x

−1R
]
,

where min and max are respectively the ≤R-minimal and ≤R-maximal.

Wherever there is no confusion, we shall drop the subscripts I and R. It is obvious that all the interval operations,
except interval reciprocal, are total operations. The additional operations of interval subtraction and division can be
defined respectively as X−Y = X +(−Y ) and X÷Y = X×

(
Y
−1
)

.
Classical interval arithmetic has a number of peculiar algebraic properties: The point intervals 0I and 1I are identity

elements for addition and multiplication, respectively; interval addition and multiplication are both commutative
and associative; interval addition is cancellative; interval multiplication is cancellative only for zeroless intervals; an

3The axiom of extensionality asserts that two sets are equal if, and only if they have precisely the same elements, that is, for any two sets S and
T , S = T ⇔ (∀z)(z ∈ S⇔ z ∈ T ).
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interval number is invertible for addition (respectively, multiplication) if and only if it is a point interval (respectively, a
nonzero point interval); and interval multiplication left and right subdistributes over interval addition (see definition 2.6
of section 2). To sum up, by definitions 2.8 and 2.10, we have the following theorem and its corollary ([14] and [22]).

Theorem 3.2 (S-Semiring of Classical Intervals). the structure 〈IR;+I ,×I ;0I ,1I〉 of classical interval numbers is a
commutative S-semiring.

Corollary 3.1 (Number System of Classical Intervals). The theory of classical intervals defines an S-number system
on the set IR.

Throughout this text, we shall employ the following theorem and its corollary (see [11] and [12]).

Theorem 3.3 (Inclusion Monotonicity in Classical Intervals). Let X1, X2, Y1, and Y2 be interval numbers such that
X1 ⊆ Y1 and X2 ⊆ Y2. Then for any binary operation ◦ ∈ {+,×} and any definable unary operation � ∈ {−,−1 }, we
have

(i) X1 ◦I X2 ⊆ Y1 ◦I Y2,

(ii) �IX1 ⊆ �IY1.

In consequence of this theorem, from the fact that [x,x]⊆ X ⇔ x ∈ X , we have the following important special
case.

Corollary 3.2 (Membership Monotonicity for Classical Intervals). Let X and Y be real interval numbers with x ∈ X
and y ∈ Y . Then for any binary operation ◦ ∈ {+,×} and any definable unary operation � ∈ {−,−1 }, we have

(i) x◦R y ∈ X ◦c Y ,

(ii) �Rx ∈ �cX.

By virtue of theorem 3.3, if the algebra 〈IR;+I ,×I ;0I ,1I〉 of classical intervals is endowed with the compatible
(preserving, or monotonic) partial ordering ⊆, then we have a partially-ordered commutative S-semiring [11]. In
addition to ordering intervals by the set inclusion relation ⊆, there are many orders presented in the interval literature.
Some of these orders are compatible with the algebraic operations on IR and others are not (see, e.g., [11], [18], [41],
and [46]).

As stated in the introduction and proved in theorem 3.2, the algebraic system of classical interval arithmetic is
a commutative S-semiring, which is a primitive algebraic structure, if compared to the totally ordered field of real
numbers. Two useful properties of ordinary real arithmetic fail to hold in classical interval arithmetic: additive and
multiplicative inverses do not always exist for interval numbers, and there is no distributivity between addition and
multiplication except for certain special cases. Another main drawback of the classical interval theory emerges from a
peculiarity of interval arithmetic: the set-theoretic characterization of the interval operations (definition 3.1) implies
that interval arithmetic considers all instances of variables as independent. Accordingly, for two interval variables X
and Y assigned the same interval constant A, both the interval operations X ◦I X and X ◦I Y are equal and they are the
same as the image of the multivariate real function find (x,y) = x◦R y, with x ∈ A and y ∈ A. In fact, this is one of the
strengths of interval mathematics: since images of real functions are inclusion monotonic (see, e.g., [11], [22], and [52]),
it follows that the image of the function find is an enclosure of the image of a unary real function fdep (x) = x◦R x, with
x ∈ A, and therefore X ◦I X = X ◦I Y is a guaranteed enclosure of the image of fdep. However, in many situations, this
enclosure might be too wide to be useful. This phenomenon is known as the interval dependency problem.

A logical formalization of the notion of interval dependency, as a logical predicate D, has been presented by
Dawood in [21]. In the remaining of this section, we introduce briefly this systematization of interval dependency and
its fundamental properties. With the aid of the dependency predicate D, in section 5, we mathematically examine the
validity of the claims of the parametric interval theory.

Before we proceed, it is convenient here to introduce some notational conventions. By a finitary real-valued
function in real arguments (in short, a real function or R-function), we understand a function fR : DR ⊆ Rn 7→ R,
and by an interval function (or I-function) we understand a function fI :DI ⊆ In 7→ I. The R-subscripted letters
fR, gR, hR shall be employed to denote real-valued functions, while the I-subscripted letters fI , gI , hI shall be
employed to denote interval-valued functions. If the type of function is clear from its arguments, and if confusion is
not likely to ensue, we shall usually drop the subscripts “R” and “I”. Thus, we may, for instance, write f (x1, ...,xn)
and f (X1, ...,Xn) for, respectively, a real-valued function and an interval-valued function, which are both defined by
the same rule.

An important notion we shall need is that of the image set of real closed intervals, under an n-ary real-valued
function. This notion is a special case of that of the corresponding (n+1)-ary relation on R. More precisely, we have
the following definition.
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Definition 3.2 (Image of Real Closed Intervals). Let f be an n-ary function on R, and for (v,y) ∈ f , let v = (x1, ...,xn),
with each xk is restricted to vary on a real closed interval Xk ⊂ R, that is, v is restricted to vary on a set V⊂ Rn. Then,
the image of the closed intervals Xk with respect to f , denoted I f , is defined to be

Y = I f (V) = I f (X1, ...,Xn)

= {y ∈ R|(∃v ∈ V)(v f y)}
= {y ∈ R|(∃n

k=1xk ∈ Xk)(y = f (x1, ...,xn))} ⊆ R,

where the set V, called the preimage 4 of Y , is defined to be the image of Y with respect to the converse relation f̂ , that
is

V = I f̂ (Y ) = {v ∈ Rn|(∃y ∈ Y )
(

y f̂ v
)
}.

An immediate consequence of definition 3.2 and the extreme value theorem is the following important property
[21].

Theorem 3.4 (Main Theorem of Image Evaluation). Let an n-ary real-valued function f be continuous in the real closed
intervals Xk. The (accurate) image I f (X1, ...,Xn), of Xk, is in turn a real closed interval such that

I f (X1, ...,Xn) =

[
min
xk∈Xk

f (x1, ...,xn) , max
xk∈Xk

f (x1, ...,xn)

]
.

A cornerstone result from the above theorem, that should be stressed at once, is that the best way to evaluate the
accurate image of a continuous real-valued function is to apply minimization and maximization directly to determine
the exact lower and upper endpoints of the image.

By definitions 2.11 and 2.12 plus theorem 3.4, the following indispensable result is provable [21].

Theorem 3.5 (Image Inclusions in Prenex Sentences). Let σ1 and σ2 be the two prenex sentences such that

σ1⇔ (∀m
i=1xi ∈ Xi)

(
∃n

j=1y j ∈ Yj
)
(∃z)(z = f (x1, ...,xm;y1, ...,yn)) ,

σ2⇔ (∀m
i=1xi ∈ Xi)

(
∀n

j=1y j ∈ Yj
)
(∃z)(z = f (x1, ...,xm;y1, ...,yn)) ,

where Xi and Yj are real closed intervals, and f is a continuous real-valued function with xi ∈ Xi and y j ∈ Yj.
If Iσ1

f and Iσ2
f are the images of f , respectively, in σ1 and σ2, then Iσ1

f ⊆ Iσ2
f .

From the fact that existential quantification over a nonempty set S defines a set T such that T ⊆ S, the previous
theorem entails, as a special case, the following important result of “real analysis” ([21] and [22]).

Corollary 3.3 (Inclusion Monotonicity of Real Images). Let VX = (X1, ...,Xi, ...,Xn) and VY = (Y1, ...,Yi, ...,Yn) be two
preimages of a continuous real-valued function f . Then, the image I f is inclusion monotonic. That is

(∀n
i=1Xi,Yi)

(
Xi ⊆ Yi⇒ I f (VX )⊆ I f (VY )

)
.

To make the statement of theorem 3.5 clear, let us consider an example. Let σ1 and σ2 be the two prenex sentences
such that

σ1⇔ (∀x ∈ [1,2]) (∃y ∈ [1,2]) (∃z ∈ R)(z = f (x,y) = y− x) ,
σ2⇔ (∀x ∈ [1,2]) (∀y ∈ [1,2]) (∃z ∈ R)(z = f (x,y) = y− x) .

In the sentence σ1, the variable y depends on x, and therefore there is some function g(x) such that σ1 has the Skolem
equivalent form

(∃g)(∀x ∈ [1,2]) (∃z ∈ R)(z = f (x,g(x)) = g(x)− x) .

Let g be the identity function. Consequently, the image of f in σ1 is Iσ1
f = {0}. Obviously, the image of f in σ2 is

Iσ2
f = [−1,1], and therefore Iσ1

f ⊆ Iσ2
f .

An exact (or generalized) interval operation can then be characterized in the following definition [21].

4From the fact that the converse relation f̂ is always definable, the preimage of a function f is always definable, regardless of the definability of
the inverse function f−1.
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Definition 3.3 (Exact Interval Operation). Let ◦R ∈ {+,×} be a binary real operation, and let I f = I
σDep
f ∨ I f = IσInd

f ,

where I
σDep
f and IσInd

f are the images of a function f for two real closed intervals X and Y in, respectively, two prenex
sentences σDep and σInd such that

σDep⇔ (∀x ∈ X)(∃y ∈ Y )(∃z ∈ R)(z = f (x,y) = x◦R y) ,

σInd⇔ (∀x ∈ X)(∀y ∈ Y )(∃z ∈ R)(z = f (x,y) = x◦R y) .

Then, an exact interval operation ◦J ∈ {+,×} is defined by

X ◦J Y = I f (X ,Y ) .

In accordance with this definition, plus definition 3.1, inexactness of classical interval arithmetic figures in the
following obvious theorem.

Theorem 3.6 (Inexactness of Classical Interval Operations). The value of a classical interval operation X ◦I Y is exact
only when the real variables x ∈ X and y ∈ Y are independent, that is

X ◦I Y = IσInd
f (X ,Y ) .

We are now ready to pass to a logical systematization of the notion of interval dependency [21].

Definition 3.4 (Interval Dependency Relation). Let S1, ...,Sm be some arbitrary real closed intervals. For two interval
variables X and Y , we say that Y is dependent on X, in symbols YDX, iff there is some given real-valued function f
such that Y is the image of (X ;S1, ...,Sm) with respect to f . That is

YDX ⇔ Y = I f (X ;S1, ...,Sm) ,

where f is called the dependency function of Y on X. Otherwise Y is not dependent on X, in symbols Y ℑX, that is

Y ℑX ⇔¬YDX ⇔¬Y = I f (X ;S1, ...,Sm) .

Hereon, the following notational convention shall be adopted. We write YD f X (with the subscript f ) to mean that
Y is dependent on X by some given dependency function f , and we write ℑ(X ,Y ) to mean that X and Y are mutually
independent.

So, to say that an interval variable Y is dependent on an interval variable X , we must be given some real-valued
function f such that Y is the image of X under f . This characterization of interval dependency is completely compatible
with the concept of functional dependence of real variables: for two real variables x and y, the variable y is functionally
dependent on x if there is some given function f such that y = f (x). If x and y are mutually dependent by an
idempotence y = f (x) and x = g(y), then, to keep the dependency information, it suffices to write either x◦R f (x) or
g(y)◦R y. In case there is neither such a given function f nor such a given function g, then it is obvious that the real
variables x and y are not functionally dependent. Definition 3.4 extends this concept to the set of real closed intervals.

The preceding definition, along with two deductions that we shall presently make (theorem 3.7 and corollary 3.4),
touches the notion of interval dependency in a way which copes with all possible cases. Noteworthy also is that the
dependency relation characterized in definition 3.4 is a meta-relation, not an object-ingredient of the numerous interval
theories heretofore presented in the literature. In other words, the results of this formalization of interval dependency
are not only about classical intervals, but they are meant to apply also to any possible theory of interval arithmetic.

To illustrate, let us give an example. Let X and Y be two interval variables that both are assigned the same individual
constant [0,1]. Then, we may have one of the following cases:

(i) Y is not dependent on X (there is no given dependency function),

(ii) Y is dependent on X , by the identity function y = f (x) = x,

(iii) Y is dependent on X , by the square function y = f (x) = x2.

To reiterate, if two interval variables X and Y both are assigned the same individual constant (both have the same
value), it does not necessarily follow that X and Y are identical, unless they are dependent by the identity function 5.

5The notions of identity and equality are commonly confused and treated as synonyms. However, they are two distinct logical concepts. Despite
the fact that equality implies identity in the theory of real numbers, this is not always the case. Two line halves are equal but not identical (one and
the same). Every line equals infinitely many other lines, but no line is (identical to) any other line (see [9] and [58]). Identity, which is the most
fundamental ingredient of any mathematical theory, is characterized by Leibniz’s principle of the identity of indiscernibles which states that two
entities x and y are identical iff any property of x is also a property of y and vice versa.
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Thereupon, for an interval theory to be dependency-aware, it must incorporate in its symbolism the dependency relation
as an object-ingredient in such a way that two intervals are equal iff they are “one and the same”. This fact itself
calls for a new characterization of the equality relation for interval numbers: Two interval variables X and Y are
equal (identical) iff they are dependent by identity, that is X = Y ⇔ XDIdY . A theory of intervals that incorporates the
dependency relation in its symbolism, namely the “theory of universal intervals”, is presented by Dawood in [22].

As a consequence of the above characterization of interval dependency, we have the next immediate theorem that
establishes that the interval dependency relation is a quasi-ordering relation [21].

Theorem 3.7 (Quasi-Orderness of the Dependency Relation). The interval dependency relation is a quasi-ordering
relation on the set of real closed intervals. That is, for any three interval variables X, Y , and Z, the following statements
are true:

(i) D is reflexive, in symbols (XDX),

(ii) D is transitive, in symbols (XDY ∧YDZ⇒ XDZ).

In accordance with this theorem and definition 3.3, we also have the following corollary [21].

Corollary 3.4 (Dependency Relation Properties). For any interval operation ◦J , and for any three interval variables
X, Y , and Z, the following two assertions are true:

(i) (X ◦J Y )DX,

(ii) (X ◦J Y )DY .

Finally, the interval dependency problem can now be formulated in the following theorem ([21] and [22]).

Theorem 3.8 (Dependency Problem). Let Xk be real closed intervals and let f (x1, ...,xn) be a continuous real-valued
function with xk ∈ Xk. Evaluating the accurate image of f for the interval numbers Xk, using classical interval
arithmetic, is not always possible if there exist Xi and X j such that X jDXi for i 6= j. That is,

(i) (∃ f )
(
I f (X1, ...,Xn) 6= f (X1, ...,Xn)

)
.

In general,

(ii) (∀ f )
(
I f (X1, ...,Xn)⊆ f (X1, ...,Xn)

)
.

4 Parametric Interval Arithmetic: Elegant Idea but Too Optimistic Claims

In this section, first, we formalize the basic notions and investigate the fundamental properties of the theory ThP of
parametric intervals, and then we set forth its claims of desirable mathematical properties. To what extent these claims
are accomplishable is to be examined in the succeeding section. The language of the theory ThP of parametric intervals
is an extension of the language of the theory ThI of classical intervals, by defining new symbols or by introducing new
abbreviations to allow for the possibility of expressing new concepts of the theory ThP .

Starting with idea that a real closed interval is a convex subset 6 of the reals, and motivated by the fact that the best
way to evaluate the accurate image of a continuous real-valued function is to apply minimization and maximization
directly to determine the exact lower and upper endpoints of the image; parametric interval arithmetic can be constructed
as a simplified type of a min-max optimization problem, with constraints varying in the unit interval 7.

A definition of a parametric interval can then be formulated as follows.

Definition 4.1 (Parametric Interval). Let x,x ∈ R such that x≤ x. A parametric interval is defined to be

[x,x] = {x ∈ R|(∃λx ∈ [0,1]) (x = (x− x)λx + x)},

where min
λx

(x) = x and max
λx

(x) = x are, respectively, the lower and upper bounds (endpoints) of [x,x].

6Let V be a vector space over an ordered field 〈F;+F,×F;≤F〉. A set C in V is said to be convex iff

(∀x,y ∈ C)(∀λ ∈ [0F,1F]) (((1−λ )x+λy) ∈ C) .

7Note that various parametrizations can be employed to characterize a parametric interval. As an instance, Elishakoff used a trigonometric
parametrization in [25]. Here we use the simple linear parametrization adopted in [10], [22], and [42].
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Obviously, definition 4.1 is equivalent to the definition of a classical interval number, and a parametric interval
is a closed and bounded nonempty real interval. However, to simplify the exposition, we shall denote 8 the set of
parametric intervals by P , and the upper-case Roman letters X , Y , and Z (with or without subscripts), or equivalently
[x,x],

[
y,y
]
, and [z,z], shall be still employed as variable symbols to denote elements of P . The sets of point and

symmetric parametric intervals shall be denoted by P[x] and PS, respectively.
In definition 4.1, a parametric interval is defined as the image of a continuous real-valued function x of one variable

λx ∈ [0,1] and two constants x and x. The endpoints, x and x, are respectively the minimum and maximum of x with
the constraint

0≤ λx ≤ 1⇒ 0≤ (x− x)λx ≤ (x− x)

⇒ x≤ (x− x)λx + x≤ x

⇒ x≤ x≤ x.

Since the endpoints x and x are known inputs, they are parameters and hence the name “parametric interval
arithmetic”, whereas λx is a variable that is constrained between 0 and 1. The binary parametric interval operations can
be guaranteed to be continuous by introducing two constrained variables λx,λy ∈ [0,1]. From the fact that x ∈ [x,x] and
y ∈
[
y,y
]

are continuous real-valued functions of λx and λy respectively, the result of a parametric interval operation
shall be the image of the continuous function

x◦R y = ((x− x)λx + x)◦R
((

y− y
)

λy + y
)

,

with λx,λy ∈ [0,1], and ◦R ∈ {+,−,×,÷} such that y 6= 0 if ◦R is “÷”.
According to the functional dependence of real variables, Lodwick in [42] defines two types of parametric interval

operations, namely “dependent operations” and “independent operations”. The dependent and independent parametric
interval operations can be characterized in the following two definitions (see [11] and [22]).

Definition 4.2 (Parametric Dependent Operations). For any parametric interval [x,x], there exists a parametric interval
[z,z] such that

[z,z] = [x,x]◦dep [x,x]

= {z ∈ R|(∃x ∈ [x,x]) (z = x◦R x)}
= {z ∈ R|(∃λx ∈ [0,1]) (z = ((x− x)λx + x)◦R ((x− x)λx + x))},

where

z = min
λz

(z) = min
λx

(x◦R x) ,

z = max
λz

(z) = max
λx

(x◦R x) ,

and ◦ ∈ {+,−,×,÷} such that 0 /∈ [x,x] if ◦ is “÷”.

Definition 4.3 (Parametric Independent Operations). For any two parametric intervals [x,x] and
[
y,y
]
, there exists a

parametric interval [z,z] such that

[z,z] = [x,x]◦ind
[
y,y
]

= {z ∈ R|(∃x ∈ [x,x])
(
∃y ∈

[
y,y
])
(z = x◦R y)}

= {z ∈ R|(∃λx ∈ [0,1]) (∃λy ∈ [0,1])(
z = ((x− x)λx + x)◦R

((
y− y

)
λy + y

))
},

where

z = min
λz

(z) = min
λx,λy

(x◦R y) ,

z = max
λz

(z) = max
λx,λy

(x◦R y) ,

and ◦ ∈ {+,−,×,÷} such that 0 /∈
[
y,y
]

if ◦ is “÷”.

It is obvious, from definitions 4.2 and 4.3, that parametric interval arithmetic is a mathematical programming
problem, and therefore parametric interval operations can be easily performed by any constraint solver such as GeCode 9,

8Throughout the text, we always deal with the same set of real closed intervals. However, for legibility and brevity; we employ different notations
for the set of interval numbers, according to what theory of intervals is being discussed. So, we can write, for instance, the brief expressions
“addition on I” and “addition on P” instead respectively of the expressions “classical interval addition” and “parametric interval addition”.

9http://www.gecode.org/
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HalPPC 10, and MINION 11. The minimization and maximization are well-defined, attained, and the resultant [z,z] is in
turn a parametric interval.

The idea underlying parametric intervals seems elegant and the theory makes a promising first impression. Notably,
it is presented in the literature with a number of optimistic claims, namely:

Claim 1. Parametric interval arithmetic has additive and multiplicative inverse elements.

Claim 2. Parametric interval arithmetic satisfies the distributive law.

Claim 3. The theory of parametric intervals provides a solution to the long-standing dependency problem.

So, are these very desirable properties accomplishable by the theory of parametric intervals? In the succeeding
section, we argue that they are not.

5 On the Structure of Parametric Intervals: Disproving the Claims

With the aid of the systematic formalization of the notion of interval dependency as a binary predicate D and the related
theorems established in section 3, along with the notions prescribed in section 4, we are now ready to investigate if
the theory of parametric interval arithmetic accomplishes its claims. The investigation conducted in this section is
metatheoretical in nature and is based mainly on the formalized apparatus fixed in section 2. That is, most of the
deductions of this section are metatheorems about the theory ThP of parametric intervals.

In the first place, we must generally ask: what exactly is the algebraic structure of parametric interval arithmetic?
The interval literature does not provide an answer for this question. However, the parametric approach to interval
analysis is usually introduced with the emphasis that parametric interval arithmetic, unlike Moore’s classical interval
arithmetic, has additive and multiplicative inverse elements, satisfies the distributive law, and explicitly keeps track of
functional dependencies (see, e.g., [25], [42], and [49]). For example, on page 1 in [42], Lodwick says:

“Unlike (classical) interval arithmetic, constrained interval arithmetic has an additive inverse, a multi-
plicative inverse and satisfies the distributive law. This means that the algebraic structure of constrained
interval arithmetic is different than that of (classical) interval arithmetic.”,

and then presents proofs for the following three statements:

(i) Additive inverse. (∀X ∈ P)
(
X−dep X = [0,0]

)
.

(ii) Multiplicative inverse. (∀X ∈ P)
(
0 /∈ X ⇒ X÷dep X = [1,1]

)
.

(iii) Distributive law. (∀X ,Y,Z ∈ P)(Z× (X +Y ) = Z×X +Z×Y ).

The first two statements are derivable by simple substitution in definition 4.2 for parametric dependent operations,
hence the subscript “dep”. For the third statement, the matter is much more complicated, and therefore we dropped the
subscripts for the operation symbols of addition and multiplication.

Getting down to particulars with the above three statements, we must turn to ask, then, the corresponding three
questions:

(1) Is the statement “A−dep A = [0,0]” equivalent to “(−A) is the inverse element of A with respect to the operation
+ on the set P , according to the dependent operation X +dep X”?

(2) Is the statement “A÷dep A = [1,1]” equivalent to “
(
A−1

)
is the inverse element of A with respect to the operation

× on the set P , according to the dependent operation X×dep X”?

(3) Does the distributive law hold, according to the dependent and independent operations?

In the sequel, we prove that the answers of the above three questions are all negative. On the face of it, the theory
of parametric intervals seems to fit squarely into its objectives, but, however the elegance of its underlying idea, we
shall argue both that the fit is problematic, and that its mathematical formulation constitutes a serious algebraic defect.

A careful formal investigation of the parametric interval operations will show that the problems of the theory of
parametric intervals are ‘foundational’ in nature. As shown in section 3, the classical interval theory considers all
numerically-equal intervals as independent which is not necessarily true. On the other hand, definition 4.2 considers
only dependency by identity and it implies that two numerically-equal intervals are always dependent which is
obviously not true (Take, for example, the interval extension of f (x,y) = x− y with each of the variables x and y

10http:// sourceforge.net/projects/halppc
11http://minion.sourceforge.net/
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varies independently on the same interval [1,2]). A consequence of this issue is that definition 4.3 will not consider
numerically-equal intervals even if they are independent. In other words, the domain of the dependent operations is the
set of pairs (X ,X), and the domain of the independent operations is the set of pairs (X ,Y ) where X and Y cannot be
assigned the same individual constant.

Recalling definition 3.4 of the interval dependency relation, it is also convenient to single out two sets of elements
of P2, according to interval dependencies.

Definition 5.1 (Dependent Parametric Set). Kdep = {(X ,Y ) ∈ P2| YDX}.

Definition 5.2 (Independent Parametric Set). Kind = {(X ,Y ) ∈ P2| ℑ(X ,Y )}.

With definitions 2.2, 2.3, 2.4, and 2.9 of, respectively, partial and total operations, an L-structure, inverse elements,
and a number system at our disposal, we are now ready to prove our statements about the theory of parametric intervals.
We begin by investigating what type of algebraic operations the parametric operations are.

Theorem 5.1 (Partiality of Parametric Dependent Operations). Parametric dependent addition and multiplication are
partial operations in the set P .

Proof. For ◦dep ∈ {+,×}, from definition 4.2, we have ◦dep : IdP →P , where

IdP = {(X ,X) | X ∈ P}.

Obviously the set IdP is the identity relation on P , which, by definition 5.1, is a proper subset of Kdep, and hence a
proper subset of P2. Therefore, according to definition 2.2, the operations ◦dep ∈ {+,×} are partial operations in the
set P of parametric intervals.

One immediate result that this theorem implies is that the parametric dependent operations consider only a single
special case of interval dependency, namely the dependency by identity, XDX . Other cases of interval dependency,
characterized in definition 3.4, are not considered by the parametric dependent operations.

Theorem 5.2 (Partiality of Parametric Independent Operations). Parametric independent addition and multiplication
are partial operations in the set P .

Proof. For ◦ind ∈ {+,×}, definition 4.3 does not consider independent intervals if they are numerically-equal. Accord-
ingly ◦ind : V →P , where V , by definition 5.2, is a proper subset of Kind, and hence a proper subset of P2. Therefore,
by definition 2.2, the operations ◦ind ∈ {+,×} are partial operations in the set P of parametric intervals.

In accordance with the preceding two results, we are now led to the following three theorems, which answer our
questions concerning inverse elements and distributivity.

Theorem 5.3 (Unprovability of Parametric Additive Inverses). Inverse elements for addition cannot be proved to exist
in parametric interval arithmetic. In other words, the statement

(∀X ∈ P)(X +(−X) = [0,0]) ,

is undecidable in the theory ThP of parametric intervals.

Proof. For any parametric interval X , define the negation of X , in the standard way, to be

−X = {z ∈ R|(∃x ∈ X)(z =−x)}.

Obviously, the relation (−X)DX is true. But, by theorem 5.1, the pair ((−X) ,X) /∈ IdP unless X = [0,0], and the
expression X +(−X) thus is not expressible as a parametric dependent operation. On the other hand, by theorem 5.2,
((−X) ,X) /∈ Kind because the predicate ℑ((−X) ,X) is not true, and the expression X +(−X) thus is not expressible
as a parametric independent operation.

It follows, therefore, that the existence of additive inverses is undecidable in the parametric interval theory.

Theorem 5.4 (Unprovability of Parametric Multiplicative Inverses). Inverse elements for multiplication cannot be
proved to exist in parametric interval arithmetic. In other words, the statement

(∀X ∈ P)
(
0 /∈ X ⇒ X×

(
X−1)= [1,1]

)
,

is undecidable in the theory ThP of parametric intervals.
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Proof. For any parametric interval X with 0 /∈ X , define the reciprocal of X , in the standard way, to be

X−1 = {z ∈ R|(∃x ∈ X)
(
z = x−1)}.

Obviously, the relation
(
X−1

)
DX is true. But, by theorem 5.1, the pair

((
X−1

)
,X
)
/∈ IdP unless X = [1,1], and

the expression X×
(
X−1

)
thus is not expressible as a parametric dependent operation. On the other hand, by theorem

5.2,
((

X−1
)
,X
)
/∈ Kind because the predicate ℑ

((
X−1

)
,X
)

is not true, and the expression X ×
(
X−1

)
thus is not

expressible as a parametric independent operation.
It follows, therefore, that the existence of multiplicative inverses is undecidable in the parametric interval theory.

Theorem 5.5 (Unprovability of Parametric Distributivity). The distributive law does not hold in parametric interval
arithmetic. In other words, the statement

(∀X ,Y,Z ∈ P)(Z× (X +Y ) = Z×X +Z×Y ) ,

is not provable in the theory ThP of parametric intervals.

Proof. Obviously, in the left-hand side
Z× (X +Y ) ,

all the variables are mutually independent. Then, applying definition 4.3 of the parametric independent operations, we
obtain the same result as in classical interval arithmetic, that is

Z×ind (X +ind Y ) = Z×I (X +I Y ) .

Let us now consider the right-hand side
(Z×X)+(Z×Y ) .

It is clear that the relations (Z×X)DZ and (Z×Y )DZ are true. However, by theorem 5.1, the pair ((Z×X) ,(Z×Y )) /∈
IdP , and the expression (Z×X)+(Z×Y ) thus is not expressible as a parametric dependent operation. Then, applying
definition 4.3 of the parametric independent operations, we again have the same result as in classical interval arithmetic,
that is

(Z×ind X)+ind (Z×ind Y ) = (Z×I X)+I (Z×I Y ) .

According to the subdistributive property of the classical interval theory, we also have only the subdistributive law

Z×ind (X +ind Y )⊆ (Z×ind X)+ind (Z×ind Y ) ,

for parametric interval arithmetic.
It follows, therefore, that distributivity is not provable in the parametric interval theory.

Thus, the preceding three theorems prove that the answers of our questions are all negative. The parametric
dependent and independent operations do not qualify as total operations on P , and in their full extent, do not suffice to
cope with interval dependencies except for the special case when the operands are trivially dependent by identity, that
is, XDX .

In order to make this clear, we next give an example.

Example 5.1 (Inexpressibility of Parametric Intervals). Let σ be the prenex sentence such that

σ ⇔ (∀x ∈ [−1,1]) (∃y ∈ [0,1]) (∃z ∈ R)(z = y− x) .

In the sentence σ , the variable y depends on x, and therefore there is some function g(x) such that σ has the
Skolem equivalent form

(∃g)(∀x ∈ [−1,1]) (∃z ∈ R)(z = g(x)− x) .

The dependency function g can be, for instance, the quadratic function, that is y = g(x) = x2. It is clear that
the relation [0,1]D [−1,1] is true, that is, the interval number [0,1] is dependent on [−1,1]. However, the pair
([0,1] , [−1,1]) /∈ IdP , and the expression [0,1]− [−1,1] thus is not expressible as a parametric dependent operation.

We now pass to our general question concerning the algebraic system of parametric interval arithmetic. The
following theorem clarifies an answer.

Theorem 5.6 (Undefinability of Parametric Interval Algebra). The theory ThP of parametric intervals does not define
an algebra for addition or multiplication on the set P .
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Proof. By theorems 5.1 and 5.2, the operations ◦dep and ◦ind, in {+,×}, are partial operations in P , and therefore,
according to definition 2.3, the algebras

〈
P;◦dep

〉
and 〈P;◦ind〉 are not definable.

That is, the structures
〈
P;◦dep

〉
and 〈P;◦ind〉 are undefinable, for the requirement that an algebraic operation must

be total on the universe set P .
In consequence of the last theorem, we also have the following important result.

Theorem 5.7 (Undefinability of Parametric Number System). The theory ThP of parametric intervals does not define
a number system on the set P .

Proof. The proof immediately follows from definitions 2.9 and 2.10, plus theorem 5.6, by the fact that every number
system is an algebra.

Thus, parametric intervals are neither “numbers” nor “S-numbers”, and therefore we cannot talk of “parametric
interval numbers”.

From the above investigation, one can conclude that the underlying idea of parametric interval arithmetic seems
elegant and simple, but it is too simple to fully account for the notion of interval dependency or to achieve a richer
algebraic structure for interval arithmetic. It is therefore imperative both to supply the defect in the parametric approach
and to present an alternative theory with a mathematical construction that avoids the defect. The former was attempted
in this article, and the latter is attempted in [22].

6 Conclusion

What exactly is the algebraic structure of parametric interval arithmetic? The interval literature does not provide an
answer for this question which looks simple and answerable, but when subject to formal investigation, develops into
a problematic situation. Notably, the parametric approach to interval analysis is usually introduced in the interval
literature with the very zealous claims that parametric interval arithmetic, unlike classical interval arithmetic, has
additive and multiplicative inverse elements, satisfies the distributive law, and explicitly provides a solution to the
long-standing dependency problem. In this article, with the aid of a logical systematization of interval dependency,
we provided an in-depth investigation of the algebraic system of parametric interval arithmetic and argued that the
optimistic claims of the theory of parametric intervals are not accomplishable.
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